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The use of normal-probability-plot analysis to compare independently determined molecular geometries 
[De Camp, W. H. (1973). Acta Cryst. A29, 148-150] is justified by a calculation of the distribution of inter- 
atomic distances in a crystal structure under some simplifying conditions, which in most cases are at least 
approximately obeyed. The distribution is shown to be normal to a good approximation in spite of the 
non-linear transformation applied to the atomic coordinates in calculating the distances. 

De Camp (1973) suggested that the use of probability-plot 
analysis (Abrahams & Keve, 1971) could be extended to 
the comparison of independently determined molecular 
geometries, each described by all of its independent bonded 
and non-bonded interatomic distances up to a certain limit. 
Examples of the use of the method can be found in De 
Camp's paper and in papers by Albertsson, Grenthe & 
Herbertsson (1973) and Oskarsson (1974). The technique 
requires that the differences between the compared distances 
are normally distributed. However, in calculating the inter- 
atomic distances one performs a non-linear transformation 
on the atomic coordinates. Even if the latter are normal 

f x dF(x) = 
0 

variates, such a transformation causes the distribution of the 
distances, and hence of the difference of distances, to be- 
come non-normal. 

Our first objective is therefore to find the distribution 
dF(x) of an interatomic distance x in a crystal structure 

dF(x) = f f (x)dx x> 0 
0 x < 0  (1) 

and to see how far from normal it is. The distribution dH(y)  
of the difference y between two independent distances is 
then obtained as 

dH(y)= { Iof l (y+t) f2( t )dt}  dy (2) 

wheref~(x) andj~(x) are the frequency functions for the two 
distances (Kendall & Stuart, 1963). If the corresponding 
distributions dFl(x) and dF2(x) are normal, d H ( y ) i s  
also normal. 

We assume that the atomic coordinates are obtained by 
least-squares refinement using a large sample of intensity 
data. The central-limit theorem then ensures that they are 
normal variates. To simplify our calculations we also make 
the following assumptions: (i) there is no correlation be- 
tween coordinates of different atoms, (ii) the only correla- 
tion within each triple of coordinates is due to the possible 
inclination of the axes, and (iii) the variance of the position 
of each atom is isotropic. For  a discussion of these assump- 
tions see, e.g., Templeton (1959). We are now able to make 
a linear coordinate transformation so that the squared 
interatomic distance z is the sum of the squares of three 
independent normal variates with non-zero mean and unit 
variance 

z= x~ + xl + x] . (3) 
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The distribution dG(z) of this statistic is the non-central Z 2 
distribution with three degrees of freedom (Kendall & 
Stuart, 1961) 

1 
--~nit exp [ - ( z  + it)/2l sinh (l/Zit)dz z>_ O 

dG(z)= 
0 z < 0 .  

(4) 

The parameter it is the sum of the squared means of xl, x2, 
and xa. By differentiating G(z) with respect to x =  1/z we 
obtain 

{exp [ - ( x -  I/2)2/2]-exp [ - ( x +  1/2)2/21} dx x>_ 0 (5) 
x < 0  

To the order of 1/I/it this distribution gives the mean 1/2+ 
1/1/2 and unit variance for the variate x. The parameter 2 
is measured in units of the variance of each of the three 
normal variates in equation (3). For  a reasonably well 
determined structure this unit is less than 3 . 1 0  -3 A 2 while 
the squared interatomic distances all are larger than 1 ,~2. 
Thus 1/it>> 1 and to a good approximation we can neglect 
the term exp [ - ( x  + 1/it)2/2] in equation (5) and take 1/)+ as 
the mean of x. After a rescaling to the usual unit of length 
we arrive at [x, 

• exp [ -  ( x -  d)2/2tr 2] dx x >_ 0 
dF(x )  = d ] / ~ t r  (6) 

0 x < 0  

as an approximate distribution of the interatomic distances. 
In equation (6) d is the mean and 0 .2 the variance of x. Since 
trod, e x p [ - ( x - d ) 2 / 2 a  2] differs substantially from zero 
only in a small interval around x =  d and the resulting 
distribution of x is essentially normal. As a consequence 
the sought distribution of the difference between two inde- 
pendent distances is also very nearly normal. In fact, 
evaluation of the integral (2) using the complete frequency 
function of equation (5), assuming the same mean d and 
variance a 2 for the two distances, results in the following 
expression, correct to the second order in a/d* 

* In terms of the parameter 2 the exact expression is 

dH(y )=  ~ exp (-y2/4) [exp (-(IYl-21/2)2/4) 

--exp ( - ( l y l  + 21/2)z/41 
+ exp (-- y2/4) [1/re(½ + 2 - y2/4) ( 2 -  erf (1 y[/2 - 1/2) 
-- erf (I y[/2 + ]/2)1 -- [exp ( - (I Yl -- 21/2)2/4) ) 
+ exp (-- (I 3'1 + 21/2)2/4]1/n(½ -- y2/4)(1 -- erf (I Yl/2)) dy 

, J  

where ,S erf (x) = 1/n co exp ( -  t2)dt. 
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1 
d H ( y ) -  2V~-0- [exp (-y2/40-2)] [1 +(20-2-y2)/4d2]dy. (7) 

In this case the variance of the difference is 20 -2 . As long as 
0-~d the correction term is neglible and for all practical 
purposes the distribution dH(y) can be treated as normal. 

In calculating the distributions we have assumed that the 
atomic coordinates of the actual crystal structure are un- 
correlated normal variates with small isotropic errors. In 
practice this condition is often rather well met and at least 
in these cases the distribution of interatomic distances is nor- 
mal to a good approximation. The difference between two in- 
dependently determined interatomic distances is then normal- 
ly distributed to an even better approximation than the 
distances themselves [cf. equations (6) and (7)]. We there- 
fore conclude that in most, if not all cases crystallographic- 
ally independent molecular geometries can be compared 
using the powerful method of normal probability plot 
analysis, as suggested by De Camp (1973). 
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The distribution of interatomic distances across unrelaxed stacking faults is shown to be independent of the 
sense of the fault vector if the shear plane is perpendicular to an n-fold axis or if the shear direction is parallel 
to an n-fold axis. Hence the unrelaxed energies of such faults, calculated using pair potentials, are symmetric 
with respect to the sense of the shear. 

In a recent computer simulation study of generalized 
stacking faults in body-centred cubic crystals (Bristowe, 
Crocker & Norgett, 1974) it was found that the unrelaxed 
energy of the faults was independent of the sense of the 
shear direction. The faults were all on (112) planes and the 
displacements were in +[111] directions. In addition the 
interatomic pair potential used to evaluate their energy 
terminated between second and third nearest neighbours. 
The aim of the work was to determine the structure and 
energy of the faults which arise on allowing the atoms to 
relax, subject to the pair potential, from their initial sheared 
positions to equilibrium configurations. However, the sym- 
metric variation of the unrelaxed energy has also proved to 
be of interest. This energy is the sum of the pair interactions 
between atoms which, for a given potential ~0(r), are defined 
by the interatomic spacings r. Thus a symmetric variation of 
fault energy indicates that positive and negative rigid-body 
shears produce identical distributions of distorted bond 
lengths. This is illustrated for the special case of the b.c.c. 
fault in Fig. 1. It suggests the following general problem 
which will be the subject matter of the present note: Given 
a crystal which undergoes a rigid-body shear on a plane 
ht=(hlh2h3) in a direction u~=[ulu2u a] under what condi- 
tions are the distributions of distorted bond lengths for 
positive and negative shears identical? 

Consider first a bond defined by the lattice vector p t =  
[plp2pa] in the undistorted crystal. If  the shear plane h~ cuts 
this bond the vector becomes p~ -L-_ au t in the faulted crystal. 
Here a is a parameter defining the magnitude of the dis- 
placement and the two signs correspond to the two senses 

of the shear. The length of the bond is thus changed from 
I= (plpJctj)ll2 to 

l + = [(p~pJ + a2utu j + 2ap~uJ)cu] u2 

where c u is the direct metric tensor. Clearly l + # l -  and 
thus if the collected bond lengths for opposite shears are to 
be identical another vector q~ must exist which gives rise to 
distorted bond lengths L -  satisfying L ± = l a: for all values 
of a. For this to occurp t and qt must be crystallographically 
equivalent variants r~ and r~, of a particular vector form r t, 

-----,_~- ~tp + V ,4. 
\ 

(a) (b) (e) 

Fig. 1. Faults on a (112) plane in a b.c.c, c~ystal projected on to 
a (1T0) plane, atoms represented by circles and squares 
lying in adjacent (1i0) planes. The nearest-neighbour bonds 
p=½[1T1] and q={[111] shown in the perfect crystal (a) are 
decreased in length and increased in length respectively by 
the shear in the [111] direction shown in (b). These changes 
in length of p and q in (b) are exactly equal to the changes 
in length of q and p respectively arising from the equal and 
opposite shear shown in (c). Note that the fault plane inter- 
sects two bonds parallel to q but only one parallel to p for 
each atom in the interface. However in this projection the 
vector p may also be considered to represent the nealest- 
neighbour bond ½[T11] so that equal numbers of bonds are 
in fact extended and contracted. 


